If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x^2)=10
We move all terms to the left:
(2x^2)-(10)=0
a = 2; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·2·(-10)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*2}=\frac{0-4\sqrt{5}}{4} =-\frac{4\sqrt{5}}{4} =-\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*2}=\frac{0+4\sqrt{5}}{4} =\frac{4\sqrt{5}}{4} =\sqrt{5} $
| 43=2+h | | (2x^2)=-10 | | 5t-2+7t=50 | | 4(2n+2)=3n-12 | | 23+y=42 | | 3e-7=5-e | | x+2/3=3 | | (2x^2)+10=0 | | 3x^-3=17/9 | | 145=j+50 | | 54+k=113 | | -8+3h=(h-5) | | 5(-x+9)=55 | | 1/4(c-8)=7 | | 122=f+87 | | 7/4w=21 | | 33+e=93 | | 33+e=92 | | 149=91+c | | 15.18-7.2y+06y=5(y-8.1) | | 6x+x=19 | | 30+v=56 | | B6x+x=19 | | 80=64+t | | 8–8v=-9v | | -5/7u=15 | | 71+m=157 | | 5x+9+3x-7=18 | | 3*(x+7)-(2x+8)=25-3*(x+2) | | -9v=8–8v | | 65=p+29 | | 4j+3=(6j+-8) |